
87

11. Digital Signature

11. 1 Requirements

Message authentication protects two parties who exchange messages from any third party.
However, it does not protect the two parties against each other. Several forms of dispute
between the two are possible. Consider the following disputes that could arise:

1. Bob may forge a different message and claim that it came from Alice.
2. Alice can deny sending the message. Because it is possible for Bob to forge a

message, there is no way to prove that Alice did in fact send the message.

Both scenarios are of legitimate concern. Here is an example of the first scenario: An
electronic funds transfer takes place, and the receiver increases the amount of founds
transferred and claims the larger amount had arrived from the sender. An example of the
second scenario is that an electronic mail message contains instructions to a stockbroker for a
transaction that subsequently turns out badly. The sender pretends that the message was never
sent.

In situations where there is not complete trust between sender and receiver, something
more than authentication is needed. The most attractive solution to this problem is the digital
signature.

Suppose you want to sign an electronic document. Why can’t you simply digitize your
signature and append it to the document? Anyone who has access to it can simply remove the
signature and add it to something else, for example, a check for a large amount of money.
With classical signatures, this would require cutting the signature off the document, or
photocopying it, and pasting it on the check. This would rarely pass for an acceptable
signature. However, such an electronic forgery is quite easy and cannot be distinguished from
the original.

There, we require that digital signatures cannot be separated from the message and
attached to another. That is the signature cannot be separated from the message and attached
to another. That is, the signature is not only tied to the signer but also to the message that is
being signed. Also, the digital signature needs to be easily verified by other parties. Digital
signature schemes therefore consist of two distinct steps: the signing process, and the
verification process.

11. 2 Digital Signature Standard (DSS)

The National Institute of Standards and Technology (NIST) has published Federal
Information Processing Standard FIPS 186, known as the Digital Signature Standard (DSS).
The DSS makes use of the Secure Hash Algorithm (SHA) described in presents a new digital
signature technique, the Digital Signature Algorithm (DSA). The DSS was originally
proposed in 1991 and revised in 1993 was a further minor revision in 1996. In 2000, an
expanded version of the standard was issued as FIPS 186-2. This latest version also
incorporates digital signature algorithms based on RSA and on elliptic curve cryptography.

88

11. 3 The DSS Approach

The DSS uses an algorithm that is designed to provide only the digital signature function.
Unlike RSA, it cannot be used for encryption or key exchange. Nevertheless, it is a public-key
technique.

Figure contrasts the DSS approach for generating digital signatures to that used with
RSA. In the RSA approach (Fig. 11. 1 a), the message to be signed is input to a hash function
that produces a secure hash code of fixed length. This hash code is then encrypted using the
sender’s private key to form the signature. Both the message and the signature are then
transmitted. The recipient takes the message and produces a hash code. The recipient also
decrypts the signature using the sender’s public key. If the calculated hash code matches the
decrypted signature, the signature is accepted as valid. Because only the sender knows the
private key, only the sender could have produced a valid signature.

The DSS approach (Fig. 11. 1 b) also makes use of a hash function. The hash code is
provided as input to a signature function along with a random number k generated for this
particular signature. The signature function also depends on the sender’s private key (PRa)
and a set of parameters known to a group of communicating principals. We can consider this
set to constitute a global public key (PUG). The result is a signature consisting of two
components, labeled s and r.

At the receiving end, the hash code of the incoming message is generated. This plus
the signature is input to a verification function. The verification function also depends on the
global public key as well as the sender’s public key (PUa), which is paired with the sender’s
private key. The output of the verification function is a value that is equal to the signature is
valid. The signature function is such that only the sender, with knowledge of the private key,
could have produced the valid signature.

We turn now to the details of the algorithms.

11. 4 RSA Signatures

Bob has a document that Alice agrees to sign. They do the following:

PRa PUa Compare

PUa

M II

H E

M H

D

Fig. 11. 1

a)

b)

E(PRa,H(M))

k

ComparePRa

M II

H

M

Sig.

PUg

Ver.H

PUgPUa

s, r s
r

89

1. Alice generates two large prime p, q, and computes n = pq. She chooses eA such that
1<eA<Φ(n)) = 1, and calculates dA such that eA dA ≡ 1 (mod Φ(n)). Alice publishes
(eA,n) and keeps private dA, p, q.

2. Alice’s signature is

)(modmy Ad n .

3. The pair (m, y) is then made public.

Bob can then verify that Alice really signed the message by doing the following:

1. Download Alice’s (eA, n).
2. Calculate).(mod nyz Ae If z = m, then Bob accepts the signature as valid; otherwise

the signature is not valid.

Suppose Eve wants to attach Alice’s signature to another message m1. She cannot simply

use the pair (m1, y), since 1my Ae  (mod n). Therefore she needs y1 with)(mod11 nmy Ae  .
This is the same problem as decrypting an RSA “ciphertext” m1 to obtain the “plaintext” y1.
This is believed to be hard to do.

Another possibility is that Eve choose y1 first, then lets the message be

)(mod11 nym Ae . It does not appear that Alice can deny having signed the message m1 under
the present scheme. However, it is very unlikely that m1 will be a meaningful message. It will
probably be a random sequence of characters, and not a message committing her to give Eve
millions of dollars. Therefore, Alice’s claim that it has been forged will be believable.

There is a variation on this procedure that allows Alice to sign a document without
knowing its contents. Suppose Bob has made an important discovery. He wants to record
publicly what he has done (so he will have priority when it comes time to award Nobel
prizes), but he does not want anyone else to know the details (so he can make a lot of money
from his invention). Bob and Alice do the following. The message to be signed is m.

Select: p, q,

Calculate: n, φ(n);

Private: p, q, dA

Select eA;

gcd(e, φ(n);)=1

Calculate:

d; eAdA≡1mod φ(n);

y=mdA (mod n)

m-message
Calculate:

z=ye A(mod n)

if z=m Bob accept

signature valid

if z # m Bob ‘s

signature does not

valid

m

[n,e] ; [y]

Bob
m

Alice
Bob

Fig. 11. 2

90

1. Alice chooses an RSA modulus n (n = pq, the product of two large primes), an
encryption exponent e, and decryption exponent d. she makes n and e public while
keeping p, q, d private. In fact, she can erase p, q, d from her computer’s memory at
the end of the signing procedure.

2. Bob chooses a random integer k (mod n) with gcd (k,n) = 1 and computes t ≡ kem
(mod n). He sends t to Alice.

3. Alice signs t by computing s ≡ td (mod n). She returns s to Bob.
4. Bob computes s / k is the (mod n). This is the signed message md.

Let’s show that s / k is the signed message: Note that ked ≡ (ke)d ≡ k (mod n), since this is
simply the encryption, then decryption, of k in the RSA scheme. Therefore,

 s / k ≡td / k ≡ kedmd / k ≡ md (mod n),

which is the signed message.

The choice of k is random, so ke (mod n) is the RSA encryption of a random number,
and hence random. Therefore, kem (mod n) gives essentially no information about m
(however, it would not hide a message such as m = 0). In this way, Alice knows nothing about
the message she is signing.

Once the signing procedure is finished, Bob has the same signed message as he would
have obtained via the standard signing procedure.

There are several potential dangers with this protocol. For example, Bob could have
Alice sign a promise to pay him a million dollars. Safeguards are needed to prevent such
problems. We will not discuss these here.

Schemes such as these, called blind signatures, have been developed by David Chaum,
who has several patents on them.

11. 5 The ElGamal Signature

The ElGamal encryption method can be modified to give a signature scheme. One feature

that is different from RSA is that, with the ElGamal method, there are many different

signatures that are valid for a given message.

Suppose Alice wants to sign a message (Fig. 11.2). To start, she chooses a large prime p

and a primitive roo  .Alice next chooses a secret integer a such that 1 .2 pa and

calculates  a (mod p) .The values of p, , and  are made public. The security of

the system will be in the fact that a is kept private. It is difficult for an adversary to

determine a from (p,), since the discrete log problem is considered difficult.

In order for Alice to sign a message m, she does the following:

1.Selects a secret random k such that gcd(k,p-1)=1

91

2.Computes r k (mod p)

3.Computes s 1 k (m-ar) (mod p-1)

The signed message is the triple (m,r,s).

Bob can verify the signature as follows:

1.Download Alice’s public key (p,),

2.Compute v1 
sr r (mod p), and v 2 

m (mod p).

3.The signature v1 
sr r (mod p), and v 2 

m (mod p).

4.The signature is declared valid if and only if).(mod21 pvv 

v 2 1
srskraarskm vr)()(  (mod p)

We now show that how the verification procedure works.

Assume the signature is valid. Since sk 1 (m-ar) (mod p-1),we have skm-ar(mod p-1),

so m)1(mod  parsk . Therefore (recall that a congruence mod p-1 in the exponent

yields an overall congruence mod p),

v 2 1
srskraarskm vr)()(  (mod p).

Suppose Eve discovers the value of a. Then she can perform the signing procedure and

produce Alice’s signature on any desired document. Therefore, it is very important that a

remain secret.

Selects:
Large prime p, primitive root  ,
secret integres a(2pa ) and

k with gcd(k,p-1)=1
Computes:

 a (mod p)

r k (mod p)
s 1 k (m-ar) (mod p-1)

m-message
Downloads:
Alice’s public key:
p, ,  and signed
message: m, r, s
Computes:

v 1 
sr r (mod p),

v 2 
m (mod p).

if).(mod21 pvv 
signature valid
otherwise
Bob does not accept
signature

m

Signed message
m, r, s

Bob
m

Alice
Bob

Alice’s public key
p, , 

Fig. 11.2

92

If Eve has another message m, she can not compute the corresponding s since she

doesn’t know a. Suppose she tries to bypass this step by choosing an s that satisfies the

verification equation. This means she needs s to satisfy

msr r   (mod p)

This can be rearranged to r s  mr  (mod p), which is a discrete logarithm problem.

Therefore, it should be hard to find an appropriate s. If s is chosen first, the equation for r

is similar to a discrete log problem, but more complicated. It is generally assumed that it is

also difficult to solve. It is not known whether there is a way to choose r and s

simultaneously, through this seems to be unlikely. Therefore, the signature schemes

appears to be secure, as long as discrete logs mod p are difficult to compute (for example,

p-1 should not be a product of small primes).

Suppose Alice wants to sign a second document. She must choose a new random value

of k. Suppose instead that she uses the same k for messages m1 and m 2 . Then the same

value of r is used in both signatures, so Eve will see that k has been used twice. The s

values are different, call them s 1 and s 2 .Eve knows that s1 k-m 1  -ar s 2 k-m 2 (mod p-1).

Therefore,

(s1 -s 2)km1 -m 2 (mod p-1).

Let d=gcd(s1 -s 2 , p-1).There are d solutions to congruence, and they can be found.

Usually d is small, so there are not very many possible values of k. Eve computes k for

each possible k until she gets the value r. She now knows k. Eve now solves

ar 11 ksm  (mod p-1)

for a. There are gcd(r,p-1) possibilities. Eve computes a for each one until she obtains

 , at which point she has found a. She now has completely broken the system and can

reproduce Alice’s signature at will.

Example. Alice wants to sign the message m1 =151405 (which corresponds to one, if we

let 01=a,02=b,....).She chooses p=225119.Then 11 is a primitive root. She has a secret

number a. She computes   18191a (mod p).To sign the message, she chooses a

random number k and keeps it secret. She computes r k 164130(mod p). Then she

computes.

s 1 k 130777)(1
1  arm

The signed message is the triple (151405, 164130,130777).

93

Now suppose Alice also signs the message m 2 =202315 (which is two) and produces the

signed message (202315,164130,164899). Immediately, Eve recognizes that Alice used

the same value of k, since the value of r is the same in both signatures. She therefore

writes the congruence

-34122k (s 1 -s 2)km1 -m 2  -50910(mod p-1).

Since gcd(-34122,p-1)=2, there are two solutions, which can be found by the method

described in Section 3.3.Divide the congruence by 2:

-17061k -25455 (mod (p-1)/2).

This has the solution k239(mod (p-1)/2), so there are two values of k (mod p) namely

239 and 239+p(p-1)/2=112798.Calculate

,164130239  59924112798  (mod p).

Since the first is the correct value of r, Eve concludes that k=239. She now rewrites

s armk  11 (mod p-1) to obtain 164130a 18710411  ksmra (mod p-1).

Since gcd(164130,p-1)=2, there are two solutions, namely a=28862 an a=141421, which

cab be found by the method of Section 3.3 .Eve computes

,20692828862  18191141421  (mod p).

Since the second value is  , she has found that a=141421.

Now that Eve knows a, she can forge Alice’s signature on any document.

The Elgamal signature scheme is an example of a signature with appendix. The message

is not easily recovered from the signature(r,s).The message m must be included in the

verification procedure. This is in contrast to the RSA signature scheme, which is a

message recovery scheme. In this case, the message is readily obtained from the

signature y. Therefore, only y needs to be sent since anyone can deduce m as y eA (mod

n).It is unlikely that a random y will yield a meaningful message m, so there is little

danger that someone can successfully replace a valid with a forged message by changing

y.

